第256章 感冒了(2 / 2)

离语 semaphore 1722 字 2个月前

大语言模型,例如 GPT 系列、LLama 系列、Gemini 系列等,在自然语言处理方面取得了显著的</p>

成功,展示了超强的性能,但仍面临诸如幻觉、过时的知识、不可追溯的推理过程等挑战。2020</p>

年,由 Lewis 等人引入的检索增强生成方法,通过整合来自外部数据库的知识,然后再继续回答问</p>

题或生成文本。这个过程不仅为后续阶段提供信息,而且确保响应是基于检测到的证据的,从而显</p>

著提高输出的准确性和相关性。在推理阶段从外部知识库动态检索信息使 RAG 能够解决诸如生成幻</p>

觉等问题。RAG 与 LLM 的集成得到了迅速的应用,提高了自然语言处理任务的性能,并且使得模型</p>

能够更好地利用外部知识和背景信息。</p>

知识抽取主要分为命名实体识别和关系抽取两方面。命名实体识别(NER)任务,旨在识别与</p>

特定语义实体类型相关联的文本跨度。该任务最早于 1991 年由 Rau 等人提出。随着信息理解、人</p>

工智能等领域的顶级会议对 NER 任务的评测,其定义逐渐细化和完善,并逐渐成为自然语言处理</p>

(NLP)领域的重要组成部分。然而,不同领域对实体类型的定义存在差异,因此 NER 模型的构建</p>

取决于特定领域任务需求,通常涵盖人物信息、地点信息和组织机构信息等。对于英语、法语、西</p>

班牙语等外语文本,通常采用单词作为基本单位,因此基于这些语言的 NER 模型主要关注单词本身。</p>

的语义特征和上下文信息。然而,中文语料文本通常由字符构成,需要考虑字符的语义信息和词汇</p>

特征,同时引入其他表征信息来提升模型性能,如中文分词(CWS)、语义部分标签(POS)等外部</p>

信息,因此构建中文命名实体识别(CNER)模型更为复杂。目前,NER 任务的研究方法主要包括基</p>

于词典和规则的方法、基于机器学习(ML)的方法以及基于深度学习(DL)的方法。</p>

目前,联合实体和关系提取神经模型可分为参数共享和序列标注两种方式。然而,许多研究将</p>

实体和关系的联合提取看作是序列标记问题。尽管如此,识别复杂的关系仍然是一个具有挑战性的</p>

任务,需要进一步提高联合提取模型的性能。此外,大多数新兴的联合提取神经模型仅在英语基准</p>

上进行了评估,其在其他语言或特定领域的有效性尚待验证。Google 机器翻译团队提出了一种包</p>

括自注意力机制和多头注意力机制的 transformer 结构。相较于循环神经网络(RNN)或卷积神经</p>

网络(CNN),多头注意力机制具有许多吸引人的优点。在中文命名实体识别任务中,数据集中存在</p>

大量非结构化文本,因此需要从多个角度和多层次来提取文本本身的更多特征。近年来,多头注意</p>

力机制在命名实体识别任务中得到了广泛应用。例如,Li 等人采用了基于自注意力机制的深度学</p>

习模型,而 Yin 等人则提出了一种名为 ARCCNER 的模型,该模型利用 CNN 网络学习中文激进特征并</p>

使用自我注意机制自动获取权重。尽管字符特征得到了增强,但激进级别的特征仍然难以获取,这</p>

不仅耗费成本,而且模型性能提升有限,尚未解决 BiLSTM 网络中的信息遗忘</p>

www.mbeoge.cc。m.mbeoge.cc</p>