349 冲击CNS顶刊的途径(求订阅)(1 / 2)

接下来,许秋遵照之前的策略,安排模拟实验人员合成包括IDIC-4F、IDIC-M、ITIC-Th-4F等在内的十数种新的非富勒烯受体材料。

他本人则在模拟实验室I中系统的研究了一下IDIC体系,利用32倍加速,对FTAZ:IDIC体系进行了包括CELIV、SCLC、GIWAXS、DFT等测试表征,毕竟这个体系之前表现出来一些不同于其他ITIC系列的独有特性。

其中,CELIV和SCLC的结果表明,IDIC的电子迁移率是ITIC的3倍左右。

GIWAXS和DFT的结果,分别在实验以及理论上证明,IDIC分子在结晶时会呈现出更加紧密的分子排布。

拿到这些表征数据后,许秋可以初步解释出现“IDIC体系可以制备厚膜器件,同时能量损失比较低,开路电压也比较高”这一实验现象的原因。

因为在有机光伏器件有效层的内部,正、负电荷是在给体、受体形成的单独聚集相区之内进行输运,当受体材料的晶区中,受体分子呈现出更加紧密的分子排布时,电子在分子间的输运将更容易进行,从而提升电子迁移率,进而降低能量损失,可以制备厚膜器件。

往前推演一步,造成IDIC分子具有更为紧密的分子排布的原因,便是侧链的改变,相较于ITIC的苯基侧链,IDIC的烷基侧链有着更小的空间位阻,更利于两个受体分子之间堆叠。

总结下来,从微观分子结构到宏观器件表现有一套完整的因果链:

侧链改变→分子间位阻减小→有效层中受体分子排布变得紧密→电子迁移率提高→可以制备厚膜器件,能量损失降低,开路电压提高。

当然,这也只是许秋整理出来的,他觉得比较合理的一套说法,并不一定就是完全正确的。

毕竟微观级别的东西,看不见摸不着,真相究竟如何,谁都很难说明白。

这也是为什么搞理论的人,互相都会看对方不顺眼,随时会开喷。

就是因为很多事情都不会有一个确切的真相,公说公有理婆说婆有理。

而不像搞材料的,就比较简单粗暴,比较客观。

比如我这边光电转换效率13%,你不信,觉得我数据是假的,那我就做个第三方检测呗,结果出来,确实是13%,争论自然就平息了。

针对IDIC体系的发现,许秋继续分析、推演,主要方向是怎么让电子迁移率进一步提高,让能量损失进一步降低。

他发现不论是ITIC还是IDIC,中央D单元都是IDTT单元,为了保证分子的溶解度,引入侧链的方式是通过sp3杂化的碳原子。

而sp3杂化的碳原子,类似于甲烷的结构,在空间中会伸出两个支链,和中央D单元共轭结构呈现大约为109度28分的二面角。

也就是说,两个引入的侧链和中央D单元共轭结构不共平面。

在这种情况下,即使是IDIC这样具有烷基支链的分子,当两个IDIC分子在垂直方向上进行堆砌时,其实也是会形成较大的位阻,只是相较于ITIC的位阻更小一些罢了。

但不管怎么说,受体分子中的侧链还是得要的,不然材料都溶解不了,自然也无从用溶液法制备电池器件。

想要解决这个问题,许秋暂时想到了两种方法,主要思路是变换引入侧链的方法。

一种方法,是利用氮原子引入侧链,同为sp3杂化的氮原子,因为孤对电子的存在,只有单根侧链,可以一定程度的降低位阻。

另一种方法,是利用sp2杂化的碳原子,也即苯环或噻吩环上的碳原子,这种情况下的碳原子,同样只有单根侧链,而且因为是sp2杂化,侧链是和中央D单元共轭结构共平面的,也可以大幅度降低位阻。

不过,如果采用这两种策略的话,算是对D单元进行大幅度的改变,原先IDT、IDTT的合成思路肯定是没法用了,合成难度会大幅度增加,又是全新的结构,需要大量的摸索。

许秋打算把这个初步的想法暂时交给模拟实验室III,让高级实验人员帮忙摸索着。

算是走一步闲棋,如果有效果那自然最好,就算没有效果,也无妨。

等眼下ITIC系列的这些工作完成后,他再投入精力攻关就是了。

除了这种大幅度对分子结构进行改性的手段,许秋还有另外一种可行的策略,有望实现器件效率的突破。

那就是制备叠层太阳能电池器件。

所谓叠层器件,顾名思义,就是多个电池串联,“叠”在一起。

平常许秋制备的器件都是单结的,也就是一个电池,如果忽略传输层,那么结构就是电极/有效层/电极。

要是双结叠层电池器件,分为双终端结构和四终端结构,双终端结构就是电极/有效层1/电极(电荷复合层)/有效层2/电极,四终端结构就是两个“电极/有效层/电极”。

要是三结叠层电池器件,那么就是三个有效层,四结就是四个有效层。

五结,暂时没听说过……

漂亮国的国家可再生能源实验室(NREL),也就是魏兴思回国前的工作单位,在传统无机硅、砷化镓、CIGS等体系中常年保持着各项世界纪录,按照2015年8月份的数据,三结器件的最高效率已经达到了44.4%,四结更是到了46.0%。

当然,把效率做这么高,已经不是出于商业化应用的考虑了,主要目的是探索科学的边界。

换句话来说,就是想知道以人类的力量,能把这个光电转换效率的数值堆到多高。